Люди на Луне [litres] - Виталий Юрьевич Егоров
Шрифт:
Интервал:
Закладка:
Самое интересное, что привносят метеориты в реголит, – это вода. Углистые хондриты и кометные тела содержат в себе значительное количество H2O (10–15 % для некоторых углистых хондритов), которая накапливается на поверхности в реголите, особенно в затененных частях глубоких кратеров. Также вода может образовываться при реакции оксида железа с протонами солнечного ветра. На основе анализов лунных горных пород долгое время, до 1990-х годов, предполагалось, что реголит абсолютно сухой, но оснащенные радарами и нейтронными детекторами космические аппараты позволили опровергнуть эту гипотезу и даже составить карту распределения льда. Среднее содержание H2O на данный момент полагается около 220–520 г на тонну реголита.
Так как поверхность этого космического тела не обновляется (на Луне нет спрединга, субдукции, да и магматической активности в целом), то вещество может накапливаться в одном углублении на протяжении сотен миллионов лет до тех пор, пока туда не прилетит очередной метеорит. В зависимости от возраста поверхности различается и толщина реголита: для геологически более молодых лунных морей это 4–5 м, а на древних «материках» – до 10–15 м.
Важной характеристикой реголита является его гомогенность: в каждом отдельном месте он отлично перемешан миллионами лет метеоритных бомбардировок. Он однороден и по составу представляет собой нечто среднее между всеми горными породами в радиусе нескольких сотен километров с добавкой внелунного метеоритного вещества, испытавшего длительное воздействие солнечного ветра и космических лучей. Иногда выделяются небольшие неоднородности, связанные с недостаточным перемешиванием или молодостью выброса, но таких множественных слоев и сортировки материала, как у земных осадочных пород вроде песчаников, на Луне не найти.
Горные породы, обломки которых можно встретить в этом реголите, тоже абсолютно не такие, как на Земле. Кроме уже упомянутых брекчий, в нем есть фрагменты лунных базальтов и анортозитов. Обе эти породы магматические, т. е. образовавшиеся в результате застывания лавы и магмы. В случае застывания в приповерхностных условиях с быстрым охлаждением, например при извержении вулкана, кристаллы не успевают вырасти из магматического расплава, и итоговая порода состоит из стекла, в котором находятся минералы- вкрапленники. Для базальтов, слагающих лунные моря, такими минералами являются пироксены ((Mg,Fe) 2Si2O6), полевые шпаты плагиоклазы (непрерывный ряд составов от NaAlSi3O8 до CaAl2Si2O8) и иногда – оливин ((Mg,Fe) 2SiO4).
Лунные базальты покрывают 17 % поверхности, однако составляют всего 1 % от объема коры. Остальное сложено анортозитами лунных материков. Они образовались около 4,5 млрд лет назад в результате процессов, происходивших при застывании базальтового магматического океана. Этот океан существовал в течение нескольких десятков миллионов лет после образования космического тела и достаточно быстро «замерз». При этом в массе магмы происходил рост кристаллов плагиоклаза, оливина и пироксена. Плотность плагиоклаза 2,6–2,7 г на куб. см, оливина – 3,3 г на куб. см, пироксена – 3,2 г на куб. см, а самого базальтового расплава – 2,7–2,8 г на куб. см.
Оливин и пироксен в расплаве тонули, формируя будущую лунную мантию, а плагиоклаз всплывал, образуя на поверхности толстую кору анортозитов. Этот процесс происходил и на Земле на стадии магматического океана, однако геологическая жизнь нашей планеты гораздо более насыщена, и от него ничего не сохранилось в исходном виде. На Луне же анортозиты везде, правда, иногда сверху их перекрывают потоки базальтов.
Но почему лунные породы другие? Ведь базальты – самая распространенная вулканическая горная порода Земли, а анортозиты, образовавшиеся в крупных магматических камерах больше миллиарда лет тому назад, до сих пор можно найти на поверхности. Первое и самое главное отличие – в лунных магматических горных породах почти нет воды. В образцах Apollo ее максимальное содержание достигало 500 г на тонну, тогда как для земных базальтов, к примеру, это несколько десятков килограммов на тонну. Соответственно, в лунных породах не будет минералов, которые кристаллизуются из расплавов, где много воды, таких как амфиболы или слюды. Понятно, что в таком случае не будет в лунных образцах и следов гидротермальных процессов, таких как прожилки кварца (SiO2) или кальцита (CaCO3). Кальцит иногда находят в трещинах лунных метеоритов, но сформировался он уже на Земле, под действием местной воды, и это легко установить по взаимоотношению минералов и их химическому составу.
Второе отличие – лунные породы невероятно старые. Если измерить в минералах содержание продуктов распада радиоактивных изотопов, например 206Pb (235U → 206Pb), то, зная время полураспада, можно рассчитать время, прошедшее с момента его кристаллизации.
Важным условием является то, что минерал при росте должен совсем не захватывать искомый изотоп, т. е. все, что смогли измерить, возникло в результате ядерного распада. Так вот, для многих лунных базальтов, которые выглядят так, будто их только что отобрали из какого-нибудь земного свежеизлившегося потока, этот возраст может быть 4,3 или 3,8 млрд лет. Таких пород с такими возрастами на Земле нет: все, что было, то разрушилось, перемялось, поплавилось и превратилось в другие (метаморфические или осадочные) породы, которые приходится долго изучать, прежде чем можно сказать, из чего они получились.
Третья важная деталь – лунные породы образовывались в условиях, где кислорода было намного меньше, чем на Земле. В том числе меньше его было и в магме. Главным элементом-индикатором кислородной обстановки у геохимиков служит железо. Так вот, в лунных образцах железо преимущественно встречается в форме Fe2+ и Fe0, а Fe3+ является странной редкой аномалией. Для Земли же ситуация с точностью до наоборот: самая обычная форма железа в коровы´х породах – это Fe3+, реже Fe2+, а Fe0 – геохимическая экзотика. Точно так же ведет себя и марганец, встречающийся в лунных минералах в форме Mn2+. Так как атомы Fe2+ и Mn2+ близки по ионному радиусу и имеют одинаковую, почти что единственно возможную степень окисления, они ведут себя похоже при образовании пород. Благодаря этому в лунных породах постоянное соотношение железа к марганцу что-то вроде 1:70. А для Земли, где обилие химических процессов разделяет пути этих элементов, соотношение несколько меньше – ~ 1:50/60.
Таким образом, лунный грунт – это невероятно сложная система, которую даже модельно воспроизвести фантастически сложно, не то что подделать. Во фрагментах пород должны сочетаться взаимоисключающие для Земли вещи: они должны быть невероятно старыми по изотопным соотношениям, а по состоянию минералов и общей структуре выглядеть так, будто образовались вчера, причем в почти бескислородной и безводной обстановке. Сами породы должны